Reactive control of a wave energy converter using artificial neural networks
نویسنده
چکیده
A model-free algorithm is developed for the reactive control of a wave energy converter. Artificial neural networks are used to map the significant wave height, wave energy period, and the power take-off damping and stiffness coefficients to the mean absorbed power and maximum displacement. These values are computed during a time horizon spanning multiple wave cycles, with data being collected throughout the lifetime of the device so as to train the networks off-line every 20 time horizons. Initially, random values are selected for the controller coefficients to achieve sufficient exploration. Afterwards, a Multistart optimization is employed, which uses the neural networks within the cost function. The aim of the optimization is to maximise energy absorption, whilst limiting the displacement to prevent failures. Numerical simulations of a heaving point absorber are used to analyse the behaviour of the algorithm in regular and irregular waves. Once training has occurred, the algorithm presents a similar power absorption to state-of-the-art reactive control. Furthermore, not only does dispensing with the model of the point-absorber dynamics remove its associated inaccuracies, but it also enables the controller to adapt to variations in the machine response caused by ageing. 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CCBY license (http://creativecommons.org/licenses/by/4.0/).
منابع مشابه
Damage detection and structural health monitoring of ST-37 plate using smart materials and signal processing by artificial neural networks
Structural health monitoring (SHM) systems operate online and test different materials using ultrasonic guided waves and piezoelectric smart materials. These systems are permanently installed on the structures and display information on the monitor screen. The user informs the engineers of the existing damage after observing signal loss which appears after damage is caused. In this paper health...
متن کاملUsing the hybrid Taguchi experimental design method – TOPSIS to identify the most suitable artificial neural networks used in energy forecasting
The use of artificial neural networks (ANN) in forecasting has many applications. Appropriate design of ANN parameters enhances the performance and accuracy of neural network models. Most studies use a trial and error approach in setting the value of ANN parameters. Other methods used to determine the best structure of a neural network only use a single evaluation criterion to determine the ap...
متن کاملAnalysis and Modeling of Yield, CO2 Emissions, and Energy for Basil Production in Iran using Artificial Neural Networks
The present study attempts to investigate the potential relationship between input energies, performance production of greenhouse basil, and greenhouse gases emitted from this product. The data were collected from 24 greenhouses using a questionnaire and verbal interaction with farmers. Results of the study showed that the total input energy and total output energy for basil production were 119...
متن کاملFuel Cell Voltage Control for Load Variations Using Neural Networks
In the near future the use of distributed generation systems will play a big role in the production ofelectrical energy. One of the most common types of DG technologies , fuel cells , which can be connectedto the national grid by power electronic converters or work alone Studies the dynamic behavior andstability of the power grid is of crucial importance. These studies need to know the exact mo...
متن کاملModeling environmental indicators for land leveling, using Artificial Neural Networks and Adaptive Neuron-Fuzzy Inference System
Land leveling is one of the most important steps in soil preparation and cultivation. Although land leveling with machines requires considerable amount of energy, it delivers a suitable surface slope with minimal soil deterioration as well as damage to plants and other organisms in the soil. Notwithstanding, in recent years researchers have tried to reduce fossil fuel consumption and its delete...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017